Predicting protein secondary structure by cascade-correlation neural networks

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting protein secondary structure by cascade-correlation neural networks

The back-propagation neural network algorithm is a commonly used method for predicting the secondary structure of proteins. Whilst popular, this method can be slow to learn and here we compare it with an alternative: the cascade-correlation architecture. Using a constructive algorithm, cascade-correlation achieves predictive accuracies comparable to those obtained by back-propagation, in shorte...

متن کامل

Predicting the Secondary Structure of Proteins by Cascading Neural Networks

Protein Secondary Structure Prediction (PSSP) is considered as a challenging task in bioinformatics and so many approaches have been proposed in the literature to solve this problem via achieving more accurate prediction results. Accurate prediction of secondary structure is a critical role in deducing tertiary structure of proteins and their functions. Among the proposed approaches to tackle t...

متن کامل

Neural Network Simulations by Cascade Correlation and Knowledge-Based Cascade Correlation Networks

Cascade correlation (CC) has proven to be an effective tool for simulating human learning. One important class of problem solving tasks can be thought of as establishing appropriate connections between inputs and outputs. A CC network initially attempts to solve the task with a minimal network configuration, but when the task cannot be solved, it is powered up by recruiting a hidden unit to cap...

متن کامل

Predicting protein secondary structure using neural net and statistical methods.

A comparison of neural network methods and Bayesian statistical methods is presented for prediction of the secondary structure of proteins given their primary sequence. The Bayesian method makes the unphysical assumption that the probability of an amino acid occurring in each position in the protein is independent of the amino acids occurring elsewhere. However, we find the predictive accuracy ...

متن کامل

Artificial Neural Network Method for Predicting Protein Secondary Structure Content

In this paper, the neural network method was applied to predict the content of protein secondary structure elements that was based on 'pair-coupled amino acid composition', in which the sequence coupling effects are explicitly included through a series of conditional probability elements. The prediction was examined by a self-consistency test and an independent-dataset. Both indicated good resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioinformatics

سال: 2004

ISSN: 1367-4803,1460-2059

DOI: 10.1093/bioinformatics/btg423